Extensions 1→N→G→Q→1 with N=C2 and Q=D5×C42

Direct product G=N×Q with N=C2 and Q=D5×C42
dρLabelID
D5×C2×C42160D5xC2xC4^2320,1143


Non-split extensions G=N.Q with N=C2 and Q=D5×C42
extensionφ:Q→Aut NdρLabelID
C2.1(D5×C42) = D5×C4×C8central extension (φ=1)160C2.1(D5xC4^2)320,311
C2.2(D5×C42) = C42×Dic5central extension (φ=1)320C2.2(D5xC4^2)320,557
C2.3(D5×C42) = Dic5.15C42central stem extension (φ=1)320C2.3(D5xC4^2)320,275
C2.4(D5×C42) = Dic52C42central stem extension (φ=1)320C2.4(D5xC4^2)320,276
C2.5(D5×C42) = D5×C2.C42central stem extension (φ=1)160C2.5(D5xC4^2)320,290
C2.6(D5×C42) = D102C42central stem extension (φ=1)160C2.6(D5xC4^2)320,293
C2.7(D5×C42) = C4×C8⋊D5central stem extension (φ=1)160C2.7(D5xC4^2)320,314
C2.8(D5×C42) = D10.5C42central stem extension (φ=1)160C2.8(D5xC4^2)320,316
C2.9(D5×C42) = D5×C8⋊C4central stem extension (φ=1)160C2.9(D5xC4^2)320,331
C2.10(D5×C42) = D10.6C42central stem extension (φ=1)160C2.10(D5xC4^2)320,334
C2.11(D5×C42) = D10.7C42central stem extension (φ=1)160C2.11(D5xC4^2)320,335
C2.12(D5×C42) = C4×C10.D4central stem extension (φ=1)320C2.12(D5xC4^2)320,558
C2.13(D5×C42) = C4×D10⋊C4central stem extension (φ=1)160C2.13(D5xC4^2)320,565

׿
×
𝔽